Archive for 2017

Even “security consulting” firms get hacked

Tuesday, September 26th, 2017

I have to confess – I love irony.

deloitte leader

… Sounds nice, but the reality is more like this …

deloitte loser

Sounds like their Office 365 admin account got hacked … because they used neither the built-in 2FA on Azure nor a privileged access management system. Like our friends at Equifax, Deloitte delayed public disclosure as long as possible and is actively down-playing the scope of the (very serious, it seems) compromise.

Would you take security advice from a firm that got hacked in this way and failed to disclose to their customers?

Equifax breach

Friday, September 8th, 2017

The Equifax breach reported this week sets a new bar for exploited PII!

Apparently SSN, name, DoB and in some cases CC data for 143 million Americans was compromised. Given that probably 1/4 of the population has no credit cards (children, the elderly, illegal immigrants, etc.), this means that PII for over half of US card-holders was compromised in a single hack. That’s huge!

What can we learn from this?

First, what not to do? Other firms should learn from Equifax’ mistakes:

  1. Equifax let this happen, presumably by under-investing in IT security. Did they have a privileged access management system? Effective access deactivation processes? Pen testing against apps? Sound firewalls? 2FA? I don’t know, but I bet some of those questions will come back with a “no.”
  2. Equifax discovered the breach on July 29 but disclosed Sep 7. That’s a 40 day delay – disgraceful and probably illegal in some states.
  3. While the Yahoo breach was larger, this one included SSNs and some D/Ls, so the data stolen from Equifax is much more suitable for identity theft. This is bad folks.
  4. There may have been insider trading – three executives sold some stock after the breach was discovered but before it was public. If they knew about the breach, they are risking jail time.
  5. Equifax setup a web site for consumers to check if their information was included in the hack. But apparently you have to waive your right to join a class action lawsuit against Equifax to use it. That’s “sneaky” – except that lots of people caught on, so now it’s just more bad press.

Bottom line: Equifax could well go out of business as a consequence of this event and how badly it was handled. I’d lay at least 50/50 odds that this event kills them within the next few years, as litigation works its way through the courts.

Next, what to do?

  1. Watch your mail for letters from banks or other firms, to see if someone has taken out a loan in your name. Consumers beware, your info is probably compromised!
  2. Stop using name, SSN or DoB as credentials. If someone calls your IT help desk and you need to authenticate them, this data should be assumed to be public and not suitable for authentication.
  3. Lock down your IT systems. You don’t want to be the next victim.

UPDATES:

  1. just saw this:
    Equifax Faces Multibillion-Dollar Lawsuit Over Hack. That didn’t take long!
  2. Krebs lambastes Equifax, noting among other things that the web site to check if you’re affected by the breach appears to be bogus – it just returns a random string, and issues a predictable PIN. He also gives good advice (news to me, as I’m not an American), that you can visit his earlier post to learn how to lock down your credit profile, which should offer some protection against incompetent credit rating agencies combined with identity thieves, at no cost.
  3. It just won’t stop. They were caught with their pants down in Argentina too! admin/admin logins

But what about usability?

Wednesday, May 17th, 2017

Thin and beautiful devices are commonplace nowadays, but it feels like nobody cares about usability any more.

What got me thinking about this is the age of my laptop. It’s an older Lenovo and has an awesome keyboard. We’re talking full keys, long travel, pre-chiclet design. My laptop is ugly as sin, but really easy to use when I travel. Sooner or later I’m going to have to replace this thing, and it seems that all laptops nowadays have chiclet keyboards. Ugh. I find it difficult to type at any appreciable speed on chiclet keyboards.

The newer keyboards look nicer, but they are harder to use. Smaller keys and shorter vertical travel.

This is a part of a larger trend.

Another example is very thin phones — with too small batteries and consequently less-than-desired battery life. I’d really rather my phone was 1mm thicker, a few tens of grams heavier, but had twice the battery life. I think most consumers might agree with me on that one.

Want another example? How about SIM cards. Oh how I hate the shrinkage of SIM cards! I travel often and instead of paying high roaming fees, I like to pick up a local SIM card when I arrive at foreign airports. That works great, but the SIM cards themselves have become so small that they are hard for someone with adult-size fingers to manipulate. Was it really necessary to shave off an extra few square millimeters? All SIM cards are electronically identical — the shrinkage is just in the plastic surrounding the chip. The original SIM card design was quite small, and new “micro” and “nano” SIMs are awful.

I’ve got more examples! Ports on laptops are one: Many new laptops either omit ports (Ethernet, VGA, etc.) or require dongles. Looks great, very thin, but quite a nuisance to use. Laptop power adapters are another. Why are there a hundred different kinds of plugs? All laptops consume 20V and about 5A – so why do we need so many shapes and sizes of power plugs?

Maybe this is an opportunity for some manufacturers to carve out a niche, selling to users who care about usability:

  • Build slightly thicker devices, with more ports and bigger batteries.
  • Support “big” SIM cards in phones.
  • Standardize on something like USB-C PD for power, even in laptops.
  • Advertise that these devices are built to be used, not just looked at.

Patch management in an IoT world

Tuesday, May 16th, 2017

The recent WannaCry ransomware spreading around the world has been both tragic and predictable. Tragic because it knocked out organizations doing important work, like the NHS in the UK. Predictable because there is a growing gap between security practices in the information technology (“IT”) and operational technology (“OT”) arenas.

In IT, we’ve learned long ago that software is inherently buggy and a reasonable defense against that is to patch — automatically and as quickly as possible once a patch is released. This reduces the window of opportunity for attackers.

We can talk about other causes – the NSA weaponizing zero-day exploits or hackers stealing and remarketing that stuff – both are problems – but I don’t imagine either of these things is going to end any time soon.

We can point to Microsoft for introducing the bug in the first place, but to be fair their coding practices have been pretty good over the years and their response to security problems has been exemplary.

What remains is us, the end customers patching known problems.

Our IT shops generally do a pretty good job, though this bit of ransomware certainly caught out a few who may have not had the skills, mandate or funding to do it right.

What we aren’t talking about is systems that are not managed by any IT organization. Operational systems control the doors and heating and cooling systems in our offices. They run devices ranging from security scanners at airports to camera surveillance at the mall. These are “operational technology” — same basic technology as IT, but used to interface with and manage physical systems.

The trouble with OT is that it gets installed by people without IT skills. Heating/ventilation/air conditioning (HVAC) vendors install PCs that keep us warm or cool. Physical security vendors install camera and door control systems. The list goes on. These are often people without IT skills. Worse, the systems they deploy are installed and forgotten. They keep running, without anyone thinking much about them, for decades.

Here’s a cool example: an old Commodore Amiga system running HVAC in a school for 30 years:

https://www.popularmechanics.com/technology/infrastructure/a16010/30-year-old-computer-runs-school-heat/

Historically, these systems have not been connected to any network. Their security basically relied on physical isolation, both from other computers and — behind locked doors — from unauthorized people. It didn’t matter if the code was buggy and exploitable, because only one or two authorized people could physically interact with them.

The world is changing, however. Your HVAC or security vendor wants to be able to assist you without a site visit. You want to be able to monitor who just walked into the building without leaving your desk. These systems are getting connected to (at least) private networks and in some cases to the public Internet.

That’s a problem, because these systems run old code, without anyone looking after security, such as firewalls, OS patches, intrusion detection, anti-malware, etc.

This is the brave new world of “Internet of Things” where old, unpatched devices perform critical functions and also get IP addresses.

We should worry. It doesn’t matter how good a job we do building IoT systems today, how confident can we be that what we build today will still be secure in 10 years? 20? 30?

WikiLeaks Vault7

Wednesday, March 8th, 2017

WikiLeaks dropped a trove of information about hacking tools from the CIA this week. It’s available via BitTorrent, in an encrypted archive, whose password is SplinterItIntoAThousandPiecesAndScatterItIntoTheWinds. That’s amusing, I suppose.

So what’s in the archive and what does it mean?

First, the archive appears to be a dump of an Intranet portal at the CIA, where staff share information about hacking tools. It’s missing a bunch of stuff – images and documents – so the download appears to have been incomplete. Moreover, this is information about the tools, rather than the tools themselves, though those were apparently leaked
earlier in a separate incident.

There are tools here to hack every common operating system – Windows, MacOSX, Linux, Android and iOS. There are also tools for various other platforms, including some Samsung TVs.

There has been a bunch of wild and wooly press coverage about this leak, but no, the CIA does not appear to have tools to compromise encryption in popular messaging system. It’s simply the case that if you can compromise either end of the conversation, then encryption between the two ends of the conversation is irrelevant. They can’t magically turn your TV into a spy device (without first breaking into your house) and they can’t (yet?) cause your car to suddenly crash. All of these things are plausible, and even discussed in the leaked documents, but not described as current capabilities.

Many of the tools discussed in the leak require physical access. i.e., if you are some “bad guy” that the CIA is interested in, and they can touch your phone or PC or TV, then they can install malware on that device to help them spy on you. Clearly, that doesn’t matter much to most people.

Some of the tools work over the network, and obviously that’s more serious, especially if they get into the hands of criminals or other adversaries that the average business or consumer might be more worried about than the CIA.

Also of note is that some of the tools leverage security vulnerabilities in popular products that the vendors and security researchers were not previously aware of. For the US government to discover such bugs and not work with vendors to close them leaves the public at risk and represents quite dubious ethics.

So is it time to panic? Hardly. We already knew that every large and complex piece of software has bugs (they are written by human beings after all) and that some of those bugs can be used to compromise security. We also already knew that all advanced government spy agencies work to compromise device security to either collect information about their adversaries or to disrupt their operations. That the CIA is doing this is only vaguely surprising, in the sense that it really should be the job of their sister agency, the NSA.

Everyone should already be aware that a smart phone is a perfect surveillance device, incorporating network connectivity, a GPS receiver, plus microphones and cameras. It’s obvious that spy agencies would work to hack into these things to monitor people, and would at least sometimes succeed.

So what’s interesting here?

Well, someone at the CIA obviously dislikes their employer enough to leak this information. That’s a serious crime.

The US government does not disclose all zero-day exploits it finds to vendors. That’s morally compromised.

WikiLeaks is more interested in the (fairly mundane) behaviour of the US government than that of various dictatorships, such as Iran and Russia. That makes WikiLeaks and Julian Asange look quite bad, actually. They are pretty much a puppet of the Russian state at this point.

The involvement of both WikiLeaks and Russian intelligence services in the recent US presidential election should be alarming to everyone in the West. There is no reason to believe this kind of interference will stop there — it’ll continue into the future and in other Western countries. This data dump is really just a side show compared to Russian cyber
warfare efforts.